Neural Network Based Predictive, Narma-l2 and Neuro-fuzzy Control for a Cstr Process

نویسندگان

  • C. Jeyachandran
  • M. Rajaram
چکیده

In recent years, there has been an expansive growth in the study and implementation of neural networks over a spectrum of research domains. Neural network based Predictive control is recognized as an efficient methodology to address difficult control problems. The NARMA model is an exact representation of the input-output behaviour of finite dimensional non-linear discrete time dynamical systems in the neighbourhood of the equilibrium state. There has been a significant increase in the number of control system techniques that are based on nonlinear concepts. With the increasing research activities in the field of structural control, many control methods have been proposed and implemented. These methods are fuzzy control, optimal control, pole placement, sliding mode control, etc. Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. The fusion of ideas from fuzzy control and neural networks had acknowledged a significant role in improving controller performances. Fuzzy logic has proven effective for complex, nonlinear and imprecisely defined systems. Neural network derives its computing power through it’s massively distributed structure and its ability to learn and therefore generalize. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. To implement Neural network based Predictive and NARMA-L2 control, first step is modeling of the process for system identification and the second step is the controller design. Neural network based Predictive controller, NARMA-L2, Neuro fuzzy logic controller are implemented for a CSTR process and their performance are compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Adaptive control of nonlinear multivariable systems using neural networks

This paper considers the problem of using approximate methods for realizing the neural controllers for nonlinear multivariable systems. In [1] the NARMA-L1 and NARMA-L2 models were introduced as approximations of he NARMA model used for the representation of a SISO nonlinear dynamical systems. The advantage obtained from using NARMA-L1 and NARMA-L2 models is that control input u(k) occurs linea...

متن کامل

Modeling and Control of CSTR using Model based Neural Network Predictive Control

this paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predi...

متن کامل

Real-Time Output Feedback Neurolinearization

 An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations.  Online training of neuroline...

متن کامل

The efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011